16 Distance Magic and Distance Antimagic Labeling of Some Product Graphs

N P Shrimali

Department of Mathematics, Gujarat University, Ahmedabad, Gujarat (INDIA) E-mail: narenp05@gmail.com

Y M Parmar

Department of Mathematics, Gujarat University, Ahmedabad, Gujarat (INDIA) E-mail: ymp.maths@gmail.com

Let G = (V, E) be a graph of order n. Let $f : V(G) \to \{1, 2, ..., n\}$ be a bijection. For any vertex $q \in V(G)$, the sum $\sum_{p \in N(q)} f(p)$ is called the weight of the vertex

q and is denoted by w(q). If there exists a positive integer γ such that $w(q) = \gamma$, for every $q \in V(G)$, then f is called a distance magic labeling. The constant γ is called the magic constant for f. A graph which admits a distance magic labeling is called a distance magic graph. If $w(q) \neq w(r)$ for any two distinct vertices q and r, then f is called a distance antimagic labeling. A graph which admits a distance antimagic labeling is called a distance antimagic graph. In this chapter, we discuss the existence of distance magic labeling and distance antimagic labeling for $C_3^t \square C_4$, $C_3^t \times C_4$, $C_3^t \boxtimes C_4$ and $C_4 \odot C_3^t$.

16.1 INTRODUCTION

Here, we consider that all graphs G with vertex set V(G) and edge set E(G) are finite and simple. We adopt Gross and Yellen [5] for various graphs and its theoretic notations and for number theoretical results, we follow Burton [3]. For acquiring the latest update, we follow a dynamic survey on graph labeling by Gallian [4].

A distance magic labeling of a graph G of order n is a bijection $f: V(G) \to \{1, 2, ..., n\}$ such that $\sum_{p \in N(q)} f(p) = \gamma$, for all $q \in V(G)$, where N(q) is the set