

Recent Frontiers of

Phytochemicals

Applications in Food, Pharmacy, Cosmetics, and Biotechnology

Edited by Siddhartha Pati, Tanmay Sarkar and Dibyajit Lahiri

Recent Frontiers of Phytochemicals Applications in Food, Pharmacy, Cosmetics, and Biotechnology

This page intentionally left blank

Recent Frontiers of Phytochemicals

Applications in Food, Pharmacy, Cosmetics, and Biotechnology

Edited by

Siddhartha Pati NatNov Bioscience Private Limited, Balasore, Odisha, India

Tanmay Sarkar

Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, West Bengal, India

Dibyajit Lahiri Department of Biotechnology, University of Engineering and Management, Kolkata, India

Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2023 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www. elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-443-19143-5

For Information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Candice G. Janco Acquisitions Editor: Gabriela D. Capille Editorial Project Manager: Dan Egan Production Project Manager: R. Vijay Bharath Cover Designer: Christian J. Bilbow

Typeset by MPS Limited, Chennai, India

	29.2.3	Flavonoids	503
	29.2.4	Alkaloids	503
	29.2.5	Terpenes	503
	29.2.6	Carotenoids	504
	29.2.7	Phytosterols	504
29.3	Phytoth	nerapy	504
29.4	Phytomedicine		
29.5	SARS-CoV-2		
References			505

30. Phytochemicals: recent trends and future prospective in COVID-19 511

Dhwani Upadhyay, Arti Gaur, Maru Minaxi, Vijay Upadhye and Prasad Andhare

30.1	Introduction		
	30.1.1	SARS-CoV-2 and COVID-19	511
	30.1.2	Plants' role in COVID-19	
		treatment	511
	30.1.3	Phytochemicals and their role in	
		COVID-19	512
	30.1.4	List of various targetable sites in	
		SARS-CoV-2 infection with	
		human cell	512
30.2	Virus-b	ased targets	513
	30.2.1	Structural-based proteins	513
	30.2.2	Nonstructural proteins	515
30.3	Host-based targets		
	30.3.1	Host proteins	516
	30.3.2	Epigentic mechanism	517
	30.3.3	Pathways	517
	30.3.4	Effects of phytochemicals from	
		honey against COVID-19	521
30.4	Conclu	sion and future prospective	522
References 5			

31. Phytochemicals—a safe fortification agent in the fermented food industry535

Renitta Jobby, Sneha P. Nair, Vaishnavi Murugan, Simran Khera and Kanchanlata Tungare

Introdu	535			
Types of	535			
31.2.1	31.2.1 Alkaloids			
31.2.2	Polyphenols	536		
31.2.3	Terpenoids	536		
31.2.4	Organosulfur compounds	536		
31.2.5	Phytosterols	536		
31.2.6	Carotenoids	536		
31.2.7	Other phytochemicals	536		
Health	benefits of phytochemicals	536		
31.3.1	Oxidative stress amelioration	537		
31.3.2	Reducing inflammation	537		
	Types of 31.2.1 31.2.2 31.2.3 31.2.4 31.2.5 31.2.6 31.2.7 Health 31.3.1	IntroductionTypes of phytochemicals31.2.1Alkaloids31.2.2Polyphenols31.2.3Terpenoids31.2.4Organosulfur compounds31.2.5Phytosterols31.2.6Carotenoids31.2.7Other phytochemicalsHealth benefits of phytochemicals31.3.1Oxidative stress amelioration31.3.2Reducing inflammation		

	31.3.3	Cardiovascular protection	537
		Anti-obesity activity	537
		Anti-diabetes activity	537
	31.3.6	Anticancer activity	537
		Antimicrobial activity	538
31.4	Fortific	ation in the fermentation	
	industr	у	538
	31.4.1	Vitamin fortification	539
	31.4.2	Iron fortification	539
	31.4.3	Calcium fortification	539
	31.4.4	Fortification with phenolics	539
31.5	Effect of	of fermentation on	
	phytoc	hemicals	540
31.6	Use of	phytochemicals as a safe	
		ng agent	541
	31.6.1	Cantaloupe (C. melon)	
		incorporated into yogurt	541
	31.6.2	Soy isoflavones used in the	
		fermentation of probiotics and	
		beverages	541
	31.6.3	Whole-bread preparation	
		using cupuassu (Theobroma	
		grandiflorum) peel	541
31.7	Limitat	ions	542
31.8	Conclu	sion	542
References			542

32. Molecular docking study of bioactive phytochemicals against infectious diseases 545

Sanjeev Kumar Sahu, Thatikayala Mahender, Iqubal Singh, Pankaj Wadhwa, Paranjeet Kaur and Kuldeep Bansal

	32.1	Introduction	545
		32.1.1 Molecular docking	545
	32.2	Molecular docking studies of plant	
		products as anti-coronal agents	546
	32.3	Molecular docking studies of plant	
		products as anti-leishmanial agents	550
	32.4	Molecular docking studies of plant	
		products as antitubercular agents	557
	32.5	Conclusion	566
	Refe	rences	566
22	Phy	tochemicals in structure-based	
55.			
	drug discovery		

Amit Kumar, Jaya Baranwal, Amalia Di Petrillo, Sonia Floris, Brajesh Barse and Antonella Fais

33.1	Introdu	569	
	33.1.1	Phytochemicals—medicinal	
		properties	570

	33.2	Phytochemicals screening of plant extracts			
		extracts			
	33.3	Phytochemicals from <i>Phytolacca dioica</i> L.			
			seeds extracts—case study I Phytochemicals composition and		
	33.4	Phytochemicals composition and			
		0	cal properties of seed extracts		
			/ashingtonia filifera—case study II	575	
	33.5	•	hemicals—opportunities and	F7 0	
		challen 33.5.1		579	
		55.5.1	Phytochemicals as vegan food ingredients	579	
		33.5.2	0	579 579	
			Dietary supplements	580	
		33.5.4		500	
		551511	phytochemicals demand	580	
		33.5.5	Transfer of phytochemicals into		
			pharmaceuticals—Challenges	580	
	Refe	rences	1 0	580	
34.			n of drug resistance in		
	leuk	iemia i	using phytochemicals:		
	an il	n-silico	o, in-vitro, and in-vivo		
	app	roach		583	
	I Iria	Docai I	Andha Bandua Hiram Saived and		
		sh Rawa	1edha Pandya, Hiram Saiyed and I		
	34.1	34.1 Introduction			
	34.2		esistance: therapeutic failure in	583	
	0 112	leukemia			
		34.2.1	Proteins/genes responsible for	585	
			drug-resistance leukemia	586	
	34.3	Combi	nation index method and		
		synergism			
	34.4	Phytochemicals as chemosensitizer and			
		modula	ators	588	
		34.4.1	Computational approach to		
			target multidrug resistance	588	
		34.4.2	, , ,		
			as multidrug resistance reversal	590	
		34.4.3	In vivo analysis of phytochemicals		
			as multidrug resistance-reversing	500	
	24 5	Condu	agents	593 594	
		owledgr	sions and future prospects	594 595	
		ences	nem	595 595	
25	Dhu	tochor	nical and bioactive		
55.			nical and bioactive		
	pote	abathr	ies of Melastoma	601	
	mala	avathri	icum	601	
	Mans	i Tiwari,	. Mridula Saikia Barooah and		
	Deep	ojyoti Bh	uyan		
	35.1	5.1 Introduction			
	35.2		medicinal practices	601 602	
			•		

	35.3	Phytocl	hemical constituents	605
	35.4	Pharma	cological potentialities	607
		35.4.1	Antioxidative potential	607
		35.4.2	Antimicrobial potential	608
		35.4.3	Wound-healing potential	608
		35.4.4	Antidiarrheal property	609
		35.4.5	Anti-ulcer property	609
		35.4.6	Hepatoprotective potential	610
		35.4.7	Antidiabetic potential	610
		35.4.8	Antinociceptive property	610
		35.4.9	Anti-cancerous property	611
	35.5	Conclu	sion and future perspective	611
	Refer	ences		611
36.			of essential oils and its applications	617
	Abde	l Rahma	n Al Tawaha, Rose Abukhader,	
	Ali Q		nijit Dey, Abdel Razzaq Al-Tawaha	l
	36.1	Introdu	iction	617
	36.2	Chemio	cal structure of flavonoids	618
			oids activity against multidrug-	
			nt microbes	619
		36.3.1	Inhibitory activity against cell	
			envelope synthesis	620
		36.3.2	Inhibitory activity against DNA	
			synthesis	621
		36.3.3	Inhibitory activity against ATP	
			synthesis	622
		36.3.4	Inhibitory activity against	
			bacterial toxins	622
		36.3.5	Inhibitory activity against	
			biofilm formation	623
		36.3.6	Membrane-disrupting activities	624
		36.3.7	Inhibitory activity against efflux	
			pumps	624
		36.3.8	Inhibitory activity against	
			bacterial motility	625
		Conclu		625
		s declara		625
		ical app		625
			participate	626
		nsent to		626
			ntributions	626
		nding		626
			interests	626
		,	of data and materials	626
		ences		626
37.			ils as anticancer agents	629
	Vilas Jagatap, Iqrar Ahmad, Aakruti Kaikini and Harun Patel			

37.1 Introduction 629

Chapter 34

Modulation of drug resistance in leukemia using phytochemicals: an in-silico, in-vitro, and in-vivo approach

Urja Desai¹, Medha Pandya², Hiram Saiyed¹ and Rakesh Rawal³

¹Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India, ²Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat, India, ³Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India

34.1 Introduction

Leukemia is an uncontrolled proliferation of blood cells. Leukemia means "white blood" (leukos, "white"; haima, "blood"), because a delay in the maturation of the transit-amplifying cells causes a significant increase in immature white blood cells to circulate, turning the blood from red to creamy white. The hallmarks of leukemogenesis encompass recurrent nonrandom chromosomal translocations (Daga et al., 2018). Leukemia is classified clinically or pathologically into acute and chronic forms based on how rapidly the disease develops and the kind of blood cell involved (Vincent et al., 2001). There are mainly four types of leukemia: acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), and acute myelogenous leukemia (AML). Many of the outstanding triumphs in cancer treatment have resulted from novel investigations and trials in leukemia. These include combination chemotherapy, stem cell transplantation, "differentiation" therapy, monoclonal antibody therapy, and targeted treatment (Greaves, 2016). Doxorubicin, cytarabine, ibrutinib, idelalisib, rituximab, nilotinib, and imatinib are among the most commonly used chemotherapeutic drugs in the treatment of leukemia. The study shows that doctors are preferring to use chemotherapy or hematopoietic stem cell transplantation (HSCT), and the major issue with this treatment is that leukemia cells can easily relapse after the treatment. The characteristics of leukemia have become more advanced in recent years, and the treatment of this disease must also be more advanced. In addition, organ transplantation can be a good option, and they will have a lifelong risk of immunosuppression. Additionally, the effect of HSCT can be dangerous, and there is proof that "the donor-derived immune system" can easily attack the "recipient's leukemic cells." After the relapse of the HSCT, the chemotherapy control procedure is utilized to mitigate the effect. The killer immunoglobulin receptor and KIR ligand interact and allow the donor's T cells to recognize the antigens related to leukemia (Maacha et al., 2019). However, it happens much too often that leukemia escapes control after HSTC and uses chemotherapy to control the disease although acute leukemia shares several mechanisms of immune evasion that can be found in solid tumors. Unfortunately, hematological malignancies have less research in this area. A deeper understanding of this process is required to create an effective and reasonable immunotherapy for acute leukemia.

Resistance to chemotherapy is one of the most difficult challenges in cancer treatment. Ninety percent of cancerrelated mortality is caused by the emergence of drug resistance, which renders chemotherapeutic drugs useless. Drug resistance is the ability of cancer cells to decrease the effectiveness and potency of chemotherapy agents (Nikolaou et al., 2018). Intrinsic resistance, which occurs in cancer when malignant cells develop resistance without having previously been exposed to chemotherapeutic drugs, causes a subpar response to initial therapy (Gottesman, 2002). In some situations, cancer cells initially respond well to chemotherapy but thereafter have a poor response because they have acquired resistance (acquired resistance). Prior studies on cell lines and animal models demonstrated that drug resistance in cancer may be gained by a variety of mechanisms, including drug efflux via the ATP-binding cassette (ABC) transporter, changing the expression of proteins targeted by anticancer medicines, drug detoxification, and evasion of apoptosis (Aris, 2000).