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Classification of Keratoconus Using Gzt
Corneal Topography Pattern

with Transfer Learning Approach

Savita R. Gandhi®, Jigna Satani®, and Dax Jain

Abstract Keratoconus, also referred as KCN, is a progressive ocular disease that
causes the thinning of cornea and distorts its curvature. The gradual thinning of
cornea induces the loss of elasticity results into a cone-shaped protrusion. This may
irreversibly change the cornea and could cause the loss of vision. In spite of many
researches have been pursued over a decade, it remains difficult to detect keratoconus
accurately in its early stage. Apart from being an important prerequisite for refractive
surgery, identification of corneal steepening shape helps to choose the right treatment
and determines the progression of the keratoconus. The different shapes of steepening
are extracted from the given corneal topographies herein. In this study, we have
applied, pretrained deep learning models using transfer learning approach to classify
the corneal topography patterns from corneal eroded images derived from the corneal
images. The said models are used to classify corneal eroded images into ten labels
as per patterns prevailed in corneal curvature due to the steepening of the surface.
This is a step forward toward predicting the progression of KCN in its early stage
with more accuracy.

Keywords Keratoconus + Corneal topography + ATLAS 9000 + Deep learning -

Transfer learning + Pretrained ImageNet model - Computer vision - Edges with
mask

18.1 Introduction

Keratoconus (KCN) is an ophthalmic condition wherein cornea bulges out conically
due to progressive thinning of outer layer referred as cornea, leading to vision loss
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[1-3]. Various researches suggest that the factors such as sensitive or thin cornea,
extensive eye rubbing, environmental condition, extensive screen time and genetic
factors are some of the root causes of the disease [4]. Latest customized corneal
lenses may halt the progression of the disease, subject to acceptance by the eyes. In
severe cases of KCN, treatments like corneal transplantation and epithelium grafting
are sometimes endangered in absence of any possible treatments [5—7].

Even with the advancement of technology, the early detection of KCN is yet the
best remedy. Moreover, the refractive surgery is not advised on keratoconic eyes
[8, 9]. The clinical screening of keratoconus is now replaced by the topographical
screening using keratometry devices which produce a color topographic and tomo-
graphic map [9, 10]. These maps render measurement of corneal steepening. The
incidences of corneal elevation and other irregularities are revealed in topographical
maps [11] that elaborate the patterns as per the progression of the keratoconus. Thus,
topographical display of various shapes plays an important role in determining the
severity of the KCN along with other corneal measures. At least, as of now, it seems
that the early identification of (a) shape, (b) steepening patterns and (c) thinning is
the best way out, as, in most of the cases, KCN exhibits symptoms of its presence
only in the later stages and by that time irreversible damages might occur. Even a
small delay in determination of the KCN in its early stages may narrow down the
choices of otherwise available appropriate treatments [12, 13].

In this study, the shape of corneal distortion manifested by the keratoconus has
been detected by extracting a pattern of corneal irregularities from the given corneal
topographical maps. These patterns were further classified by us into ten signif-
icant shapes associated with the progression of disease. Here, to determine these
patterns, we primarily used (a) the ‘transfer learning’: an outshoot of deep layered
network learning techniques, (b) tailoring CNN (convolutional neural network) and
(c) pretrained ImageNet models along with the methodologies of (d) ‘Computer
Vision’. The topographic maps used here-in were axial curvature elevation maps,
derived from the ATLAS 9000 topographer. The CNN being the best known deep
learning neural network for image recognition, classification and detection of objects
from the images by extracting features has been our obvious choice.

18.2 Related Work

The transfer learning is based upon conventional wisdom of ‘sharing knowledge
with others’. Using the data similar in nature but collected from different sources,
the pretrained deep learning models are firstly trained rigorously and then these
vastly knowledge equipped models are applied upon relatively smaller data or task
to speed-up the very training [14, 15].

The application of the ‘deep neural network’ and ‘transfer learning’ upon medical
images has proven its worth and hence are extensively used with MRI, CT scan, X-ray,
microscopy, color fundus images, etc. [16].
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Not, so long ago, the optic diseases were diagnosed primarily through clin-
ical screening but the sharp advancement of neural network has drawn the atten-
tion of researchers for early and accurate detection of ophthalmic disease [17]. In
past decades, many scientists have significantly contributed in keratoconus detec-
tion by applying NN, ANN, SVM, MLP, RBFNN, decision tree, etc. [10, 18-22].
Lately, introduction of machine learning techniques have empowered the process of
identification and classification of disease including keratoconus [23, 24].

The convolution neural network has just begun to claim its efficiency over other
peer techniques by giving higher accuracy in image recognition and classification, so
does for keratoconus detection as well [25-28]. Lavric et al. [29] applied customized
CNN architecture named as ‘KeratoDetect’ to detect the eyes with keratoconus by
achieving 99% accuracy after increasing epoch numbers.

With the recent advancement in deep learning, a conventional thought of ‘sharing
gained knowledge’ has been interpreted in transfer learning which allows a small-
scale task to use the learnings of pretrained large-scale models such as AlexNet,
DenseNet, ResiNet, VGG16, etc. Among family of pretrained models, VGG16 is
simple, lightweight and shows efficient outcomes with image segregation. Kim et al.
[16] suggested transfer learning approach to classify images between X-ray images
and normal images by mapping databases of various sources where images were
obtained from same imaging modalities. Salih et al. [30] performed CNN trained by
VGG16 to extract the features from corneal topography which was supplied to SVM
for classifying features of elevation and thickness. The classification outcome was
further used to predict its match with clinical diagnosis of corneal disease.

Deep learning neural network alongside with the computer vision techniques
offer tailor-made solution [31]. The study of the achievements of other researchers
suggests the significant performance of the deep neural network [32—-35], motivating
us to apply it with the recent advance techniques of transfer learning for our research.

18.3 Study Data and Methods

Being an outperformer, the rich deep learning technique has delivered new approach
of transferring the former learnings to new data and tasks, also referred as inductive
transfer. Transfer learning applies previously gained knowledge to learn new tasks
which may be smaller in size or used with imbalanced data. We customized convo-
lutional neural network (CNN) to incorporate various pretrained ImageNet models
to deal with corneal topographies used.

The bilateral axial elevation maps, clinically tested and approved, were used as the
subject group. These maps were fetched from corneal wavefront analysis and Placido
disk-based Carl Zeiss ATLAS9000 topography modality. This device has been mainly
used to measure corneal shape, curvature and irregularities. The elevation-based
topography has its own advantages over Placido-based devices [36, 37]. The axial
curvature maps display global curvature of the corneal surface. Corneal topographical
maps have been used to detect the keratoconus and identify the shapes of steepening
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occurred due to the progression of the disease. The axial elevation map highlights
the protrusion of corneal curvature.

This study uses axial maps divided into ten groups based on the Amsler—Krumeich
standard classification scheme [38] that relies upon the anterior corneal features for
the identification of keratoconus and its progression shown in Fig. 18.1 according
to the degree of steepening and skewing of the curvature [39]. As per the standard
classification, patterns are identified as (i) Round, (ii) Oval, (iii) Symmetric Bowtie
(SB), (iv) Symmetric Bowtie with Skewed Radial Axes (SB/SRAX), (v) Asym-
metric Bowtie with Superior Steepening (ASB/SS), (vi) Asymmetric Bowtie with
Inferior Steepening (ASB/IS), (vii) Asymmetric Bowtie with Skewed Radial Axes
(AB/SRAX), (viii) Superior Steepening (SS) (ix) Inferior Steepening (IS) and (x)
Irregular for identifying the severity of the keratoconus. Out of these labels, ‘IS’
and ‘AB/SRAX’ show irregularities in corneal curvature, whereas ‘SB/SRAX’ and
‘Oval’ reveal symmetry in them. According to the classification scheme, various
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Round Oval Symmetric Symmetric bow tie
bow tic with skewed radial
axes
Asymmetric bow tie Asymmetric bow tic Asymmetric bow tic Superior stecpening
with supcrior with inferior with skewed radial
sleepening steepening axes
Inferior steepening Irregular

Fig. 18.1 Corneal topography pattern as per classification scheme [40]
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patterns found due to the skewness occurred in corneal curvature were associated to
the degree of progression of keratoconus [39]. Total 372 bilateral axial maps from
200 patients have been used as subject group, here in this study.

In our previous research, more than 800 maps of 534 x 534 x 3 pixels were
processed with the methods of OpenCV to derive images with edges and area of
steepening within edges from the elevation maps referred as ‘images with edges
and color mask’. There, we attained more than 98% of accuracy in detection of
keratoconus from ‘images with edges and color mask’, variant of color topographical
maps [41]. In continuation to our previous research, we selected 372 keratoconus
images for all the ten classes in this study. This study excluded maps of forme fruste
keratoconus. These selected maps were resized into 224 x 224 pixels in order to feed
to our customized CNN model. Using transfer learning approach, the significant
features were fed to the pretrained ImageNet models to form very deep layered
learning architecture. Here, all 372 images were converted into grayscale eroded
images with two objectives: (i) segregate the pattern from the images respect to the
shape of the steepening and (ii) classify KCN images into ten varieties of shapes
specified as per standard classification mentioned by Amsler—Krumeich by reducing
the dimension of the derived images with images-and-mask [40].

The Computer Vision methods were used to achieve our first objective as follows.
As a first step, the ‘canny edge detection method’ was customized to optimize
the conversion of the color ‘images with edges and mask’ into grayscale eroded
images. These RGB color images were converted into grayscale using OpenCV'’s
color conversion method, followed by Gaussian method to eliminate the noise from
the converted grayscale images. To determine any significant edge in an elevated area
in an image, gradients were calculated using Sobel method of OpenCV. Further the
double thresholding was applied to set the minimum and maximum threshold values.
This was done to ultimately read the intensity of every pixel of the grayscale image
to identify the most relevant pixel, for drawing an edge, pixel by pixel. Thus, initial
requirement of deriving various shapes and patterns was successfully achieved by
repeating the aforesaid steps on the data images which are shown in Fig. 18.2.

These derived shapes from the image were then used to determine the prevalence
and type of the corneal distortion. For it, the grayscale images were required to
be refined further, for determining the degree of the progression of keratoconus by
classifying the shapes into ten labeled patterns as per Amsler—Krumeich standard
classification scheme. These images were transformed into 64 x 64 to get convolved
with Law’s texture convolution method in order to reduce the dimension and refine
the edges for clear identification of the shapes.

In this process, grayscale images were convolved with the five Law’s texture
energy kernels. These kernels are single dimensional, provide blurring of noise,
smoothen the gray level texture, detect and contrast the edge and finally emphasize
the ripples and spots at pixel level. Thus, the steepening patterns present in the
maps were distinguished and were used further to check the bent of distortion in the
curvature of the cornea. The grayscale eroded images can be further used for the
classification of the patterns using the deep learning models.
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Fig. 18.2 Patterns from the variant of the keratoconus maps with edges and color mask

In order to attain the second objective of our study, the grayscale eroded images so
obtained were used as an input. Also, here, we have used a wide range of conventional
artificial neural network models, starting with ANN and also tried highly recommend
deep neural network models which are ready-to-use and pretrained using millions
of heterogeneous image datasets. Before feeding the image dataset to the various
transfer learning models, highly imbalance maps in each of ten classes were further
required to be augmented to balance the each class with sufficient data in it.

As shown in Fig. 18.3, new images were generated by augmenting with (i) rotation
of 10 degree about height, (ii) width shift of 10% and (iii) horizontal and vertical flip.
These steps yielded 3962 maps, amounting to approximately 350 images for each
class. Here, the models used 3231 images for training and 359 as test data.

Figure 18.4 explains the workflow for the multiclass classification, wherein the
preprocessed grayscale eroded images of corneal topographies with edges and mask
were resized and used as an input for the ImageNet deep learning models. Various
pretrained deep learning models were optimized using the transfer learning approach
to classify the eroded maps into ten different groups. In this multiclass classification,
the features were extracted from fully connected dense layer of models and then
used them with logistic regression estimator as an input. These pretrained ImageNet
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Fig. 18.3 Edges derived from eroded images using Law’s texture method

Input Images with edges Normalize the Image Data:
and color mask of 534 x Applying Law’s texture
534 resolution technique to refine and extract

edges from the eroded images

A 4

/Image Pre-processing "‘"Se Augmentatipn .
using OpenCV methods rotation range = 10, width_shift range=0.1,
height_shift_range=0.1, shear_range=0.1,

.fo: Convem:zgllmages — | brightness range = (0.3, 1.0), horizontal_flip = True,
tnto graysca f“ images, vertical_flip= True, fill_mode = 'nearest’
Apply erosion and

dilationto get the
eroded images

Step 1: Data loading of pre-processed Inputs of

X

labelled Images
Step 2: Apply transfer learning algorithms
Input augmented images (ANN, SVM, CNN, VGGI16, VGGI9,
which have been eroded Xception, InceptionV3, InceptionResNetV2,
from the grayscale MobileNet, ResNet50)

topographies for patterns Step 3: Calculate performance metrics & accuracy for

classification training and validation

Fig. 18.4 Work flow of multiclass classification of topography patterns using images with edges
and color mask

models are listed in Table 18.1 in Sect. 4, which were implemented using ‘Keras
module sets’.

Among the pretrained models used in this study, VGG16, VGG19, MobileNet and
ResNet50 models use 224 x 224 for input images, whereas InceptionV3, Xception
and InceptionResNetV2 demand 299 x 299 as input size. These architectures use
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a large kernel size of 11 x 11 and 5 x 5, which are applied in the first couple of
convolutional layers of the model, and the subsequent layers then use 3 x 3 sized
kernel. Each of the selected pretrained deep convolutional neural network models
used ImageNet weights with MaxPooling followed by single flatten layer and fully
connected layer with two dense layers. ‘ReLU’ activation function was used by
models to adjust the weights for assuring nonlinearity to convolutional layers. Also
the default padding was used to fit the kernel over the images. A convolution layer
followed MaxPooling layer to reduce the dimensionality of image and passing it to
the next layer as an input. In order to implement transfer learning approach, sorted
features from the first dense layer of fully connected were used to feed into logistic
regression model to predict the probability ratio for each of the ten shapes. ANN
model was designed with two dense layers of 256 and 128 neurons. After converting
the output data into vector, it was fed to the fully connected layer which further used
Softmax activation function to convert the output into probability indices. Batch
normalization along with dropout method was applied in the subsequent layers after
flattening to avoid overfitting.

Although the flattened layer could have measured the probability of signifi-
cant features, yet we have applied the logistic regression upon the sliced fully
connected layer to determine the various patterns to yield higher accuracy. We have
selected VGG16, VGG19, InceptionResNetV2 and MobileNet networks, to achieve
the aforesaid.

18.4 Discussion and Results

We had to erode the grayscale images so that it can be classified into various groups
based upon corneal steepening patterns. Since ANN alone was not able to classify
the preprocessed images into various classes and exhibited poor training and testing
accuracy, we further trained our pretrained deep learning models by fitting the logistic
regression estimator using the transfer learning approach to elevate the classification
capabilities of each model. This would ultimately help us in determining the degree
of progression of the keratoconus disease. VGG16 and VGG19 models used 4096
features. InceptionV3 and MobileNet models have used 1000 features. A total of
2048 features were used by ResNet50 model, while the InceptionResNetV2 used
1536 features only. Table 18.1 illustrates the comparative chart of the performance
metrics. It was necessary for highlighting the quality of classification of patterns of
corneal steepening, through transfer learning.

Among the pretrained models used here for classification, VGG16 and VGG19
gave 99.41% and 99.62% training accuracy, whereas the testing accuracy obtained
by the same models was 76.04% and 77.43%, respectively. MobileNet and ResNet50
trained the model well with 91.95% and 92.23% accuracy and classified data with
75.48 and 76.60 test accuracy. The prediction by the Xception and InceptionV3 were
50.13% and 34.26%, respectively.
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Table 18.1 Comparison of training accuracy and testing accuracy obtained by deep learning neural
networks using transfer learning approach KCN grayscale topographic maps of KCN

Model type Training accuracy | Testing accuracy | Precision |Recall | F1-score
ANN 20.73 12.26 - - -
VGG16 99.41 76.04 75.93 76.04 | 75.79
VGG19 99.62 77.43 77.59 7743 | 77.38
Xception 63.75 50.13 51.02 50.13 | 50.03
InceptionV3 34.21 34.26 38.33 3426 |32.11
InceptionResNetV2 | 86.22 77.18 76.21 77.16 |76.42
MobileNet 91.95 75.48 75.75 7549 | 75.39
ResNet50 92.23 76.60 - - -

As it can be seen from the Table 18.1 that the performance of models—Xception
and InceptionV3—was not up to the mark in spite of using the logistic regression for
accuracy optimization; hence, the support vector machine was then applied with these
two models to improve accuracy but resulted into 37.88% for Xception and 38.44%
for InceptionV3 model, respectively, which were similar to the performance gained
using logistic regression by these two models. InceptionResNetV?2 exhibited 86.22%
as training accuracy and 77.18% as testing accuracy which was closer to testing fit
with better training to testing ratio. Out of many of applied transfer learning models,
VGG16, VGG19, InceptionResNetV2 and MobileNet showed an assuring average
of 76.24% F1-score. Thus, results with more than 75% accuracy in identifying the
corneal steepening patterns are further illustrated in Table 18.1 herein.

18.5 Analysis of Results

Figure 18.5 gives the performance matrix attained by the various pretrained models
used here, whereas Fig. 18.6 represents the comparison of the various training and
testing accuracies gained by each of the deep convolutional models when applied
upon keratoconus dataset.

Here, since the VGG16 and VGG19 were trained well, its training accuracy
attained was 99.41% and 99.62%, respectively. However, VGG16’s confusion matrix,
in few cases, suggests that it misclassified the ‘Asymmetric Bowtie - Inferior steep-
ening’ image with ‘Asymmetric Bowtie — skewed radial axis’ image. Similarly,
VGGI19, in few cases, mistook ‘Asymmetric Bowtie — skewed radial axis’ maps
as ‘Superior Steepening’ image. In spite of such a great training accuracy, VGG16
and VGG19, testing accuracy came down to 76.04% and 77.43%, respectively.

The InceptionResiNetV2 led to well-balanced training and testing accuracy of
86.22% and 77.18%, respectively, when it comes to identification of corneal curva-
ture. The MobileNet yielded 91.95% of training and 75.48% testing accuracy. The
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Fig. 18.5 Confusion matrix for each transfer learning model
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Fig. 18.6 Comparative analysis of the training and testing accuracies obtained by various deep
learning models, when approached with the transfer learning

ResiNet50 obtained training and testing accuracy of 92.23% and 76.6%, respec-
tively. It shall be noted from the Fig. 18.5 that even the very basic ANN, widely used
Xception, which is extension of the Inception model and InceptionV3, these three
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Fig. 18.7 F1-score of pretrained deep neural network model applied with eroded corneal maps

models out of many used here were highly unstable and their performance was below
average.

The deep neural models used here were frequently misinterpreted the following
two patterns, i.e., (i) manifestation due to occurrence of skewed steepening in the
inferior side of cornea and (ii) ‘Symmetric bowtie’ shapes, that with the ‘Round’ and
‘Oval’ maps which often prevail in the advanced keratoconus.

Figure 18.7 shows the overall performances of all the deep neural models used
herein, as per respective F1-scores as follows: the VGG19 had the highest of 77.38%,
InceptionResNetV2 attained 76.42% and the VGG16’s 75.79% and MobileNet’s
75.39% were almost similar. However, the InceptionV3 and Xception were average
in identifying the corneal steepening pattern accurately.

It can be seen in Fig. 18.8 that Xception and InceptionV3 have led to the highest
misclassification followed by the VGG16. While VGG19 and MobileNet showed
similar performances in classifying patterns, it was the InceptionResNetV2 that
outperformed that too with minimal error rate.

Among all the pretrained models, with the eroded images of distorted corneal
curvatures, the performance of InceptionResNetV2 was the best with minimum
misinterpretation rate and was trained well with similar training and testing accuracy.
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Fig. 18.8 MSE for pretrained deep neural network model applied with eroded corneal maps

18.6 Conclusion and Future Work

Out of our research, it can logically be concluded that the ‘InceptionResNetV2,
VGG19, MobileNet and VGG16 had best of accuracy, precision, Recall and F1-
score’, among all the pretrained models used herein with bilateral corneal axial
maps for determining the keratoconus pattern. Hence any of the aforesaid, our
researched, deep convolution neural networks can be used to identify the corneal
steepening patterns to determine the keratoconus progression and its comparative
treatments. However, the pattern classification was made using only anterior featured
corneal maps. Even for refractive surgeries, our researched CNN, can be used along
with the shapes classified using Law’s texture. We hope our gathered knowledge of
patterns and shapes of the distortion in corneal curvature will enable early detection
of keratoconus, in times to come.
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